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Abstract
We consider a general framework for integrable hierarchies in Lax form and
derive certain universal equations from which ‘functional representations’ of
particular hierarchies (such as KP, discrete KP, mKP, AKNS), i.e. formulations
in terms of functional equations, are systematically and quite easily obtained.
The formalism genuinely applies to hierarchies where the dependent variables
live in a noncommutative (typically matrix) algebra. The obtained functional
representations can be understood as ‘noncommutative’ analogues of ‘Fay
identities’ for the KP hierarchy.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

In the framework of Gelfand–Dickey-type hierarchies [1] (see also section 2.4), the
commutativity of flows, which is the hierarchy property, is an almost trivial consequence.
On the other hand, one is dealing with a rather implicit form of flow equations and it is quite
difficult to extract them in more explicit form. In the case where the dependent variables take
their values in the (commutative) algebra of functions (of the infinite set of evolution times),
expressions of the hierarchy in terms of (Hirota–Sato) τ -functions can typically be achieved.
For example, the famous KP hierarchy in Gelfand–Dickey-form Ltn = [(Ln)+, L] (see
section 2.4 for notational details) is equivalent to a ‘Fay identity’ (see [1–9], in particular).
Such a representation of the hierarchy in the form of functional equations expresses the
complete set of hierarchy equations directly in terms of the relevant dependent variables as a
system of equations which depend on auxiliary parameters (see also [10–19] for related work).

In a recent publication [20], we were led to a formula which may be regarded as a
counterpart of the ‘differential Fay identity’ in the case of the KP hierarchy with variables in a
noncommutative algebra, e.g., an algebra of matrices of functions. In this work, we consider
the correspondence between such ‘noncommutative’ (and in particular Gelfand–Dickey-type)
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hierarchies and equations which may be regarded as ‘noncommutative Fay identities’. The
main results can actually be proved in a surprisingly general setting. A more specialized
framework then allows us to apply the general results simultaneously in particular to the KP,
discrete KP, q-KP, AKNS and other hierarchies.

In section 2, we start with a quite general framework for integrable hierarchies. In
subsection 2.4, we specialize it to Gelfand–Dickey-type hierarchies and prove a central result
of this work. Section 3 then concentrates on a more concrete class of examples. A modified
KP hierarchy is treated in section 4. Finally, section 5 contains some concluding remarks.

2. A general framework for hierarchies

2.1. Preliminaries

Let t = (t1, t2, t3, . . .) be a set of independent (commuting) variables. We introduce

χ(λ) := exp


∑

n�1

λn

n
∂tn


 =:

∑
n�0

λnχn, χ(λ)−1 =:
∑
n�0

λnχ̂n (2.1)

as formal power series in some auxiliary parameter λ. Then3

χn = pn(∂̃), χ̂n = pn(−∂̃), n = 0, 1, 2, . . . (2.2)

where pn, n = 0, 1, 2, . . . , are the elementary Schur polynomials (see [21, 22], for example),
and

∂̃ := (
∂t1 , ∂t2

/
2, ∂t3

/
3, . . .

)
. (2.3)

If F depends on t, then

χ(λ)(F ) = F(t + [λ]) =: F[λ](t), χ(λ)−1(F ) = F(t − [λ]) =: F−[λ](t), (2.4)

where

[λ] := (λ, λ2/2, λ3/3, . . .). (2.5)

Using

d

dλ
χ(λ) = ∂(λ)χ(λ) (2.6)

with the derivation

∂(λ) :=
∑
n�1

λn−1∂tn , (2.7)

we find
d

dλ
F[λ] = ∂(λ)(F[λ]),

d

dλ
F−[λ] = −∂(λ)(F−[λ]). (2.8)

Furthermore, from (2.6) we obtain

nχn =
n∑

k=1

∂tkχn−k, nχ̂n = −
n∑

k=1

∂tk χ̂n−k, n = 1, 2, . . . . (2.9)

Since, as an exponential of a derivation, χ(λ) is an automorphism, we have

χ(λ)(FG) = χ(λ)(F )χ(λ)(G) (2.10)

3 Note that χ0 = id = χ̂0 and χ1 = ∂t1 = −χ̂1.
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on elements F,G of an algebra, the elements of which depend on t. As a consequence, χn and
χ̂n, n = 0, 1, 2, . . . , are Hasse–Schmidt derivations [23, 24], i.e. they satisfy the generalized
Leibniz rules

χn(FG) =
n∑

k=0

χk(F )χn−k(G), χ̂n(FG) =
n∑

k=0

χ̂k(F )χ̂n−k(G). (2.11)

2.2. Linear systems and their integrability conditions

The integrability conditions of the linear system

∂tn(W) = LnW, n = 1, 2, . . . (2.12)

with invertible4 W are

∂tm(Ln) − ∂tn(Lm) = [Lm,Ln] (2.13)

(‘zero curvature’ or ‘Zakharov–Shabat’ conditions). Here, Ln and W are elements of a unital
algebra R. Let us rewrite the linear system in the following way5:

χ̂n(W) = EnW, n = 0, 1, 2, . . . (2.14)

with En ∈ R. Then E0 = 1 (where 1 stands here for the unit in R), E1 = −L1, E2 =
(1/2)

(−L2 + ∂t1(L1) + L1L1
)
, and so forth, so that En can be expressed in terms of Lk, k � n,

and their derivatives. Introducing

E(λ) :=
∑
n�0

λnEn, (2.15)

the linear system takes the form

W−[λ] = E(λ)W. (2.16)

As a consequence, we have

W−[λ1]−[λ2] = E(λ2)−[λ1]W−[λ1] = E(λ2)−[λ1]E(λ1)W (2.17)

which requires the last expression to be symmetric in λ1, λ2. Hence, the integrability conditions
of the linear system translate to

E(λ2)−[λ1]E(λ1) = E(λ1)−[λ2]E(λ2). (2.18)

This formula is of central importance in this work. Expanding in λ1, λ2, we obtain the
following expression of the zero curvature conditions:

m∑
k=0

χ̂k(En)Em−k =
n∑

k=0

χ̂k(Em)En−k m, n = 0, 1, 2, . . . . (2.19)

By the use of (2.8) and (2.12), we have

d

dλ
(E(λ)W) = −∂(λ)(W−[λ]) = −∂(λ)(E(λ)W) = −∂(λ)(E(λ))W − E(λ)L(λ)W,

(2.20)

where

L(λ) :=
∑
n�1

λn−1Ln. (2.21)

4 W should be regarded as a ‘fundamental matrix solution’ of the linear system.
5 We may express the linear system alternatively and equivalently in the form χn(W) = HnW with Hn ∈ R. Our
choice turns out to be more convenient, however. See the remark in section 3.2.
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Hence,

d

dλ
E(λ) = −∂(λ)(E(λ)) − E(λ)L(λ). (2.22)

Expansion in powers of λ leads to

nEn = −
n∑

k=1

(
∂tk (En−k) + En−kLk

)
, n = 1, 2, . . . . (2.23)

This can be used to compute En recursively in terms of Ln and their derivatives.

Remark. Let � be an automorphism of R which commutes with the partial derivative
operators with respect to the variables tn, and let us consider an extension of the linear system
(2.12) of the form

�(W) = KW. (2.24)

This gives rise to the additional integrability conditions

∂tn(K) = �(Ln)K − KLn, n = 1, 2, . . . , (2.25)

which can also be expressed as

K−[λ]E(λ) = �(E(λ))K. (2.26)

If the elements of R depend on a discrete variable, the shift operator � with respect to this
variable provides us with an example of such a �. Then (2.24) is a discrete evolution equation.

2.3. Lax equations

Let

L := W D̃W−1 (2.27)

where W satisfies the linear system (2.12) and D̃ ∈ R is independent of t. This is known as a
(Wilson–Sato) ‘dressing transformation’. Differentiation of (2.27) with respect to tn and use
of (2.12) leads to the Lax equations

∂tn(L) = [Ln,L], n = 1, 2, . . . . (2.28)

Typically, we should look for a recipe which determines Ln,En in terms of L (cf section 2.4).
An alternative form of equations (2.28) is obtained as follows:

E(λ)LW = E(λ)WD̃ = W−[λ]D̃ = (WD̃)−[λ] = (LW)−[λ] = L−[λ]W−[λ] = L−[λ]E(λ)W.

(2.29)

Hence,

L−[λ]E(λ) = E(λ)L. (2.30)

Expanding in λ, this becomes

χ̂n(L) = [En,L] −
n−1∑
k=1

χ̂k(L)En−k, n = 1, 2, . . . . (2.31)

Clearly, this set of equations is equivalent to (2.28).
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2.4. Gelfand–Dickey-type hierarchies

Let R now be a unital associative algebra with a projection ( )− such that R = (R)− ⊕ (R)+

where ( )+ = id − ( )− and (R)−, (R)+ are subalgebras. Furthermore, we assume that R is
generated by L via the product in R and the projection ( )−.

If Ln is of the form

Ln = (Ln)+, (2.32)

we call (2.28) a Gelfand–Dickey-type hierarchy. In this case, a well-known argument
(see [1], for example) shows that the zero curvature conditions (2.13) are satisfied as a
consequence of (2.28), so that no further equations have to be added to those already given
by (2.28).

In the following, we derive a very simple formula for En. Let us introduce Ẽ0 = 1, Ẽ1 =
−L and

Ẽn+1 = (Ẽn)−L, n = 1, 2, . . . . (2.33)

Lemma 2.1.

Ẽn = −
n∑

k=1

(Ẽn−k)+L
k n = 1, 2, . . . . (2.34)

Proof. Using

(Ẽn−k)+L
k = Ẽn−kL

k − (Ẽn−k)−Lk = Ẽn−kL
k − Ẽn−k+1L

k−1

for k = 1, . . . , n − 1, we have the following telescoping sum:

n−1∑
k=1

(Ẽn−k)+L
k =

n−1∑
k=1

Ẽn−kL
k −

n−2∑
k=0

Ẽn−kL
k = −Ẽn + Ẽ1L

n−1 = −Ẽn − Ln.

�

It is convenient to introduce the product (see also [25, 26], for example)

X � Y := (X)+Y − X(Y )− = (X)+(Y )+ − (X)−(Y )− (2.35)

for X, Y ∈ R.

Lemma 2.2. As a consequence of the hierarchy (2.28) with (2.32), we have

nẼn = −Ln −
n−1∑
k=1

(
∂tk (Ẽn−k) + Ẽn−k � Lk

)
, n = 1, 2, . . . . (2.36)

Proof. By induction on n. The formula trivially holds for n = 1 and is easily verified for
n = 2 using Lt1 = [(L)+, L]. Let us assume that it holds for n. Then

nẼn+1 = n(Ẽn)−L = −(Ln)−L −
n−1∑
k=1

(
∂tk (Ẽn−k)−L − (Ẽn−k)−(Lk)−L

)
by the use of the induction hypothesis. With the help of

∂tk (Ẽn−k)−L = ∂tk (Ẽn+1−k) − (Ẽn−k)−∂tk (L) = ∂tk (Ẽn+1−k) + (Ẽn−k)−[(Lk)−, L]

= ∂tk (Ẽn+1−k) + (Ẽn−k)−(Lk)−L − Ẽn+1−k(L
k)−,
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we obtain

nẼn+1 = −(Ln)−L −
n−1∑
k=1

(
∂tk (Ẽn+1−k) − Ẽn+1−k(L

k)−
)

= −
n∑

k=1

(
∂tk (Ẽn+1−k) − Ẽn+1−k(L

k)−
)

where we again made use of (2.28). Finally, we take account of
n∑

k=1

Ẽn+1−k(L
k)− = −

n∑
k=1

Ẽn+1−k � Lk +
n∑

k=1

(Ẽn+1−k)+L
k

= −
n∑

k=1

Ẽn+1−k � Lk +
n+1∑
k=1

(Ẽn+1−k)+L
k − (Ẽ0)+L

n+1

= −
n∑

k=1

Ẽn+1−k � Lk − Ẽn+1 − Ln+1,

where we applied (2.34) in the last step, to obtain (2.36) for n + 1. �

Theorem 2.1. For a Gelfand–Dickey-type hierarchy, we have

En = (Ẽn)+, n = 0, 1, 2, . . . . (2.37)

Proof. This is clearly true for n = 0, 1. Taking the ( )+ part of (2.36) leads to

n(Ẽn)+ = −
n∑

k=1

(
∂tk (Ẽn−k)+ + (Ẽn−k)+(L

k)+
)
.

Now our assertion follows by comparison with the recursion relation (2.23) for En. �

3. A class of examples

In this section, we specialize the very general setting of the previous section in order to
make contact with some known hierarchies. Our basic assumptions are formulated in the first
subsection below. An important tool is the notion of residue (see [1], for example) exploited
in section 3.2. With its help we derive a general ‘functional representation’ in section 3.3,
which also presents several examples.

3.1. Preliminaries

Let A be a unital associative algebra and D an invertible linear operator on A such that

(1) all its powers Dn, n ∈ Z, are linearly independent (in the sense of a left A-module),
(2) for all a ∈ A,

Da = �(a)D + ϑ(a). (3.1)

Then � : A → A has to be an algebra endomorphism and ϑ a �-twisted derivation,

ϑ(ab) = ϑ(a)b + �(a)ϑ(b). (3.2)

(3) D and � are invertible (hence � is an automorphism of A).
(4) D commutes with all partial derivatives with respect to a set of coordinates, say tn, n ∈ N.

This implies that also � and ϑ commute with all these partial derivatives.
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As a consequence of conditions (2) and (3), we have

aD−1 = D−1�(a) + D−1ϑ(a)D−1 (3.3)

and thus

D−1a = �−1(a)D−1 − D−1ϑ(�−1(a))D−1

= �−1(a)D−1 − �−1(ϑ(�−1(a)))D−2 + D−1(ϑ ◦ �−1)2(a)D−2. (3.4)

Iteration leads to

D−1a = �−1(a)D−1 − ϑ1(a)D−2 + ϑ2(a)D−3 − · · ·
= �−1(a)D−1 +

∑
1�n

(−1)nϑn(a)D−n−1, ∀ a ∈ A (3.5)

where

ϑn := �−1 ◦ (ϑ ◦ �−1)n, n = 1, 2, . . . . (3.6)

Examples. Let A be an algebra of matrices of functions.

(1) Let D be the operator of multiplication by a parameter ζ . The integer powers of ζ are
linearly independent and commute with all a ∈ A. We have � = id and ϑ = 0.

(2) D = ∂ , the operator of partial differentiation with respect to a variable x. Then
∂a = ax + a∂ and ∂−1a = a∂−1 − ax∂

−2 + axx∂
−3 − · · ·, where an index x indicates a

partial derivative with respect to x (see [1], for example). Here, we have � = id and
ϑ = ∂x .

(3) D = �, the shift operator (�a)(x) = a(x + 1) acting on a function a (or a matrix of
functions) of a variable x. Then �a = a+� and �−1a = a−�−1 where a±(x) = a(x±1).
In this case, � = � and ϑ = 0.

(4) D = �q , where q �∈ {0, 1} and (�qa)(x) = a(qx) acting on a function a (or a matrix of
functions) of a variable x. Here we have � = �q and ϑ = 0.

(5) Let D be the q-derivative operator

(∂qa)(x) = a(qx) − a(x)

x(q − 1)
(3.7)

acting on functions of a variable x. In this case ϑ is the q-derivative and � = �q with the
q-shift operator defined above.

Let uk ∈ A and R be the algebra generated by the formal series

L = Wu0DW−1 = u0D + u1 + u2D
−1 + u3D

−2 + · · · (3.8)

(where we assume u0 �= 0) and the projections

(X)− = X<0, (X)+ = X�0 (3.9)

of an element X ∈ R to its parts containing only negative, respectively non-negative, powers
of D. Another choice would be (X)− = X<1, (X)+ = X�1. This can be treated analogously
and leads to further examples, see also section 4. As a consequence of our assumptions for
the operator D, we have R+R+ ⊂ R+ and R−R− ⊂ R−, as required in section 2.4. In the
following, we consider Gelfand–Dickey-type hierarchies in this specialized framework.

Remark. Generically, the set of zero curvature equations (2.13), with (2.32) and (3.8), actually
implies the Lax hierarchy (2.28) and is then equivalent to it. The following argument is taken
from [27]. Writing (2.13) in the form

∂tn(L
m) − [(Ln)+, L

m] = ∂tn(L
m)− + ∂tm(Ln)+ − [(Ln)+, (L

m)−], (3.10)
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we observe that, for fixed n, on the right-hand side the order of powers of D is bounded above by
n, whereas on the left-hand side it increases with m. Suppose X(n) := ∂tn(L)− [(Ln)+, L] �= 0.
The left-hand side of (3.10) then takes the form

∂tn(L
m) − [(Ln)+, L

m] =
m−1∑
k=0

LkX(n)Lm−1−k, m � 1,

which, for sufficiently large m, contains terms with powers of D greater than n, which leads
to a contradiction (unless the coefficients of all those terms vanish because of very special
properties of L). Hence, X(n) = 0 and thus ∂tn(L) − [(Ln)+, L] = 0.

As a consequence of (2.28) with (2.32), we have

∂tn(u0) = 0, n = 1, 2, . . . (3.11)

so that u0 has to be constant. Furthermore, the first hierarchy equation in particular leads to

u1,x = u0�(u2) − u2�
−1(u0). (3.12)

In the following, we will look at u2 as our ‘primary object’. Introducing a potential φ such
that

u2 = φx, (3.13)

equation (3.12) becomes

u1 = u0�(φ) − φ�−1(u0) (3.14)

(up to addition of an arbitrary element of A independent of x, which we set to zero).
In the following, we use the abbreviations

a+ := �(a), a− := �−1(a) (3.15)

where a ∈ A.

3.2. Taking residues

We define the residue res(X) of X ∈ R as the left coefficient6 of D−1. It follows that

(LX<0)�0 = u0�(res(X)), (X<0L)�0 = res(X)�−1(u0). (3.16)

The zero curvature condition (2.13) with (2.32) can be written as follows:

∂tn(L
m)<0 − ∂tm(Ln)<0 = [(Lm)<0, (L

n)<0]. (3.17)

Taking the residue leads to

res(Lm)tn = res(Ln)tm . (3.18)

Hence there is a φ ∈ A such that

φtn = res(Ln). (3.19)

For n = 1, this is (3.13).

Lemma 3.1. As a consequence of the hierarchy (2.28) with (2.32), we have

res(Ẽn) = χ̂n(φ), n = 1, 2, . . . . (3.20)

6 This means that, before reading off the coefficient, we have to commute all powers of D to the right. If D is given
by example 1 or 2 in subsection 3.1, the residue does not depend on the ordering, however.
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Proof. First we note that

res(X � Y ) = res(X�0Y�0) − res(X<0Y<0)

vanishes for all X, Y ∈ R, since the first residue on the right-hand side vanishes as a
consequence of R�0R�0 ⊂ R�0 and the second vanishes because X<0Y<0 does not contain
higher than −2 powers of D according to our assumptions for D. Also taking (3.19) into
account, the residue of (2.36) is

n res(Ẽn) = −φtn −
n−1∑
k=1

∂tk (res(Ẽn−k)).

Our assertion now follows by comparing this recursion formula with (2.9), since res(Ẽ1) =
−res(L) = χ̂1(φ). �

Lemma 3.2.

E(λ) = 1 − λu0D − λ(u0φ
+ − φ−[λ]u

−
0 ). (3.21)

Proof. As a consequence of theorem 2.1, equation (2.33) and lemma 3.1, we have

En+1 = ((Ẽn)<0L)�0 = ((Ẽn)<0u0D)�0 = (res(Ẽn)D
−1u0D)�0 = res(Ẽn)u

−
0 = χ̂n(φ)u−

0

for n = 1, 2, . . . . Hence,

E(λ) = 1 − λu0D − λ(φ − φ−[λ])u
−
0 − λu1

from which our assertion follows by the use of (3.14). �

Remark. Note that (3.21) is polynomial in D. If we express the linear system (2.12) in the
form χn(W) = HnW with Hn ∈ R, instead of (2.14), the resulting relation E(λ)[λ]H(λ) = 1
with H(λ) = ∑

n�0 λnHn implies that H(λ) is an infinite formal power series in D. This is
the reason why we chose to work with E(λ) instead of H(λ).

3.3. Functional representations

The next result evaluates equations (2.18) in the framework under consideration. Since by
construction they are equivalent to the zero curvature equations (2.13), according to the remark
in section 3.1 they are generically also equivalent to the complete hierarchy.

Theorem 3.1. In the present context, (2.18) is equivalent to

u0ϑ
((

φ[λ1] − φ[λ2]
)
u−

0

) =
(

1

λ1
− u0φ

+
[λ1] + φu−

0

) (
1

λ2
− u0φ

+
[λ1]+[λ2] + φ[λ1]u

−
0

)

−
(

1

λ2
− u0φ

+
[λ2] + φu−

0

) (
1

λ1
− u0φ

+
[λ1]+[λ2] + φ[λ2]u

−
0

)
(3.22)

(which is antisymmetric in λ1, λ2).

Proof. Let us write (3.21) as

−1

λ
E(λ) = u0D − ω(λ) where ω(λ) := 1

λ
− u0φ

+ + φ−[λ]u
−
0 .

Using this in (2.18), we obtain the following two equations:

u0(ω
+(λ1) − ω+(λ2)) = (ω(λ1)−[λ2] − ω(λ2)−[λ1])u0,

u0ϑ(ω(λ2) − ω(λ1)) = ω(λ1)−[λ2]ω(λ2) − ω(λ2)−[λ1]ω(λ1).
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The first equation turns out to be an identity by the use of the definition of ω(λ). So, we are
left with the second equation which is

u0ϑ
((

φ−[λ2] − φ−[λ1]
)
u−

0

) =
(

1

λ1
− u0φ

+
−[λ2] + φ−[λ1]−[λ2]u

−
0

) (
1

λ2
− u0φ

+ + φ−[λ2]u
−
0

)

−
(

1

λ2
− u0φ

+
−[λ1] + φ−[λ1]−[λ2]u

−
0

) (
1

λ1
− u0φ

+ + φ−[λ1]u
−
0

)
.

After a Miwa shift t → t + [λ1] + [λ2], this becomes (3.22). �

To order λ0
2λ

n
1, (3.22) yields

χn+1(u1) − u0χn

(
φ+

t1
− ϑ

(
φu−

0

)) = u1χn(u1) +
n−1∑
k=1

u0χk(φ
+)χn−k(u1) + [u0χn(φ

+), u1],

(3.23)

and to order λm
2 λn

1,m, n � 1,

χn+1(χm(ϕ)) − χm+1(χn(ϕ)) =
n∑

k=1

χk(ϕ)χn−k(χm(ϕ)) −
m∑

k=1

χk(ϕ)χm−k(χn(ϕ)) (3.24)

where we introduced

ϕ := �−1(u0)φ = u−
0 φ. (3.25)

In particular, for m = 1, n = 2, we recover the potential KP equation
1
3ϕtx − 1

12ϕxxxx − 1
4ϕyy = 1

2 (ϕxϕx)x − 1
2 [ϕx, ϕy] (3.26)

where x = t1, y = t2 and t = t3. In fact, as expressed in the subsequent theorem, the
equations (3.24) are actually equivalent to the whole (noncommutative) potential KP hierarchy
with the dependent variable (3.25).

Theorem 3.2. The equations (3.22) imply(
λ−1

1 − λ−1
2 + ϕ[λ2] − ϕ[λ1]

)
x

= (
λ−1

1 − λ−1
2 + ϕ[λ2] − ϕ[λ1]

)(
ϕ[λ1]+[λ2] − ϕ[λ1] − ϕ[λ2] + ϕ

)
− [

ϕ[λ1] − ϕ, ϕ[λ2] − ϕ
]
, (3.27)

which is equivalent to
3∑

i,j,k=1

εijk

(
λ−1

i (ϕ[λi ] − ϕ) + ϕϕ[λi ]
)

[λk] = 0, (3.28)

where λ1, λ2, λ3 are independent parameters and εijk is totally antisymmetric with ε123 = 1.

Proof. By expansion of (3.27) in λ1, λ2, one recovers (3.24), which we derived from (3.22).
Summing (3.27) three times with cyclically permuted parameters λ1, λ2, λ3 leads to

λ−1
1

((
ϕ[λ1] − ϕ

)
[λ3] − (

ϕ[λ1] − ϕ
)

[λ2]

)
+ λ−1

2

((
ϕ[λ2] − ϕ

)
[λ1] − (

ϕ[λ2] − ϕ
)

[λ3]

)
+ λ−1

3

((
ϕ[λ3] − ϕ

)
[λ2] − (

ϕ[λ3] − ϕ
)

[λ1]

)
= [

ϕ
(
ϕ[λ1] − ϕ[λ3]

)]
[λ2] +

[
ϕ
(
ϕ[λ2] − ϕ[λ1]

)]
[λ3] +

[
ϕ
(
ϕ[λ3] − ϕ[λ2]

)]
[λ1]

which can be rearranged to (3.28). The limit λ3 → 0 leads back to (3.27). �

As shown in [20], (3.27) is a ‘noncommutative’ version of the differential Fay identity
for the (potential) KP hierarchy (see [3–9], for example).7 Equation (3.28), which already

7 In the commutative case, setting ϕ = τx/τ and integrating once leads to the familiar differential Fay identity. The
form in which we wrote (3.27) facilitates this calculation.
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appeared in [11, 12], is then a ‘noncommutative’ version of the algebraic Fay identity. Here
we have shown that, expressed as above in terms of (3.25), these formulae apply universally
to all examples in the class considered in this section!

In the special case of the KP hierarchy, (3.27) is actually equivalent to the hierarchy
equations. This is not true in general. Typically (3.22) contains equations beyond those given
by (3.27) and these are given by (3.23).

Remark. The KP hierarchy equations in the form (3.24) are the integrability conditions of
the linear system

χm+1(f ) = −f χm(ϕ), m = 1, 2, . . . . (3.29)

In fact, as a consequence of the latter we have (by the use of (2.11))

χn+1(χm+1(f )) = f

(
−χn+1(χm(ϕ)) +

n∑
k=1

χk(ϕ)χn−k(χm(ϕ))

)
− χ1(f )χn(χm(ϕ)). (3.30)

Antisymmetrization in m, n yields (3.24).

3.3.1. KP hierarchy. The usual KP hierarchy in the Gelfand–Dickey framework (see [1], for
example) is obtained by choosing u0 = 1, u1 = 0,D = ∂ , the operator of partial differentiation
with respect to x = t1, so that � = id and ϑ = ∂x . Then (3.22) becomes

−(
φ[λ1] − φ[λ2]

)
x

= (
λ−1

2 − φ[λ2] + φ
)(

λ−1
1 − φ[λ1]+[λ2] + φ[λ2]

)
− (

λ−1
1 − φ[λ1] + φ

)(
λ−1

2 − φ[λ1]+[λ2] + φ[λ1]
)

(3.31)

which, after some simple algebraic manipulations, yields (3.27) (note that ϕ = φ in this case).
Hence, here (3.22) (and thus (2.18)) reduces to (3.27).

3.3.2. Discrete KP and q-KP. The choice of D in example 3 leads to the discrete KP hierarchy
[6, 28, 29]. For the choices of D in examples 4 and 5, the hierarchy has been called ‘Frenkel
system’ [30] and ‘KLR system’ [31], respectively, in [6], where the authors proved that both
are isomorphic to the discrete KP hierarchy (see also [1]).8

In the following we concentrate on examples 3 and 4, which can be treated simultaneously.
Then ϑ = 0 and a+ = �(a) = �a�−1 with (�a)(s) = a(s + 1) or (�a)(s) = a(qs).
Furthermore, we choose u0 = 1. Then (3.22) takes the form(
λ−1

2 − φ+
[λ2] + φ

)(
λ−1

1 − φ+
[λ1]+[λ2] + φ[λ2]

) = (
λ−1

1 − φ+
[λ1] + φ

)(
λ−1

2 − φ+
[λ1]+[λ2] + φ[λ1]

)
.

(3.32)

In the limit λ2 → 0, this yields(
λ−1 − φ+

[λ] + φ
)
x

= (φ+ − φ)
(
λ−1 − φ+

[λ] + φ
) − (

λ−1 − φ+
[λ] + φ

)(
φ+

[λ] − φ[λ]
)
. (3.33)

Since according to theorem 3.2, φ and φ+ both have to satisfy the KP hierarchy equations,
the last equation should represent a Bäcklund transformation of the KP hierarchy. Let us
momentarily turn to the case of a commutative algebra A. Setting φ = τx/τ with a function
τ , an integration leads to

τ +
[λ],xτ − τ +

[λ]τx = λ−1τ +
[λ]τ + βτ +τ[λ] (3.34)

where β is an arbitrary x-independent function. This equation has a limit as λ → 0 if

β = −λ−1 + β0 + β1λ + · · · (3.35)

8 The authors of [31] actually amputated the q-derivative by dropping the argument x in the denominator of (3.7).
See also [32–36] for work on q-deformed KP hierarchies.
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where β0, β1, . . . are arbitrary x-independent functions. If the latter are all set to zero, (3.34)
becomes equation (0.20) in [6] after a Miwa shift t �→ t − [λ]. Treating them as parameters,
however, we should recover from (3.34) auto-Bäcklund transformations of the KP hierarchy.

Returning to the ‘noncommutative’ case, expansion of (3.33) in powers of λ leads to

(χn+1 − χnχ1)(φ
+) − χn+1(φ) = (φ+ − φ)χn(φ

+ − φ)

+
n−1∑
k=1

χk(φ
+)χn−k(φ

+ − φ) + [χn(φ
+), φ+ − φ]. (3.36)

For n = 1, this is

(φ+ − φ)y − (φ+ + φ)xx = 2φ+
x (φ+ − φ) − 2(φ+ − φ)φx. (3.37)

In the ‘commutative’ case with φ = τx/τ , this becomes(
D2

x − Dy

)
τ + · τ = β0τ

+τ (3.38)

in terms of Hirota derivatives Dx,Dy . This equation is a well-known auto-Bäcklund
transformation of the KP equation [37–39].

3.3.3. AKNS. With the choices of example 1, (3.22) reads(
λ−1

2 − u0φ[λ2] + φu0
)(

λ−1
1 − u0φ[λ1]+[λ2] + φ[λ2]u0

)
= (

λ−1
1 − u0φ[λ1] + φu0

)(
λ−1

2 − u0φ[λ1]+[λ2] + φ[λ1]u0
)
. (3.39)

Choosing moreover

u0 =
(

1 0
0 0

)
, φ =

(
p q

−r p′

)
, (3.40)

we obtain the following system:

0 = (
λ−1

1 − λ−1
2 + p[λ2] − p[λ1]

)(
p[λ1]+[λ2] − p[λ1] − p[λ2] + p

)
+ (qr)[λ2] − (qr)[λ1] − [

p[λ1] − p, p[λ2] − p
]
, (3.41)

0 = (
λ−1

1 − λ−1
2 + p[λ2] − p[λ1]

)
q[λ1]+[λ2] + λ−1

2 q[λ1] − λ−1
1 q[λ2], (3.42)

0 = λ−1
1

(
r[λ1] − r

) − λ−1
2

(
r[λ2] − r

)
+ r

(
p[λ1] − p[λ2]

)
, (3.43)

which leaves p′ undetermined. In the limit λ2 → 0, this system yields

(p[λ] − p)x = qr − (qr)[λ], (3.44)

q[λ] − q = λq[λ],x + λ(p[λ] − p)q[λ], (3.45)

r[λ] − r = λrx − λr(p[λ] − p). (3.46)

Multiplying (3.45) by r from the right, (3.46) by q[λ] from the left, adding the resulting
equations and using (3.44), we find

(p[λ] − p + λq[λ]r)x = [p[λ] − p + λq[λ]r, p[λ] − p]. (3.47)

Expanding this equation in powers of λ, a simple induction argument shows that9

p[λ] − p = −λq[λ]r. (3.48)

9 Constants of integration are set to zero.
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Eliminating p from (3.45) and (3.46) with the help of this formula, we arrive at

q−[λ] − q + λqx = λ2qr−[λ]q, r[λ] − r − λrx = λ2rq[λ]r, (3.49)

which is a ‘functional representation’ of the AKNS hierarchy [16, 17], generalized to the case
where q and r are matrices with entries from any associative algebra. Expanding the above
system in powers of λ leads in lowest order to

qt2 = qxx − 2qrq, rt2 = −rxx + 2rqr. (3.50)

To next order in λ we obtain, after use of the first system,

qt3 = qxxx − 3(qrqx + qxrq), rt3 = rxxx − 3(rqrx + rxqr). (3.51)

For example, we may choose q and r as M ×N and N ×M matrices, respectively, with entries
from any, possibly noncommutative, associative algebra. In this way, (3.50) also covers the
case of (coupled) vector nonlinear Schrödinger equations (if we replace t2 by the imaginary
variable ıt).10

Remark. Equations (3.41), (3.42) and (3.43) should reduce completely to the system (3.49)
of functional equations, since it contains the full set of hierarchy equations. We verify that
this is indeed the case. First, we note that equations (3.49) imply

(qr)[λ] − qr = λ(q[λ]r)x. (3.52)

Introducing p such that px = −qr , this yields (3.48) after an x-integration. Inserting (3.48)
into (3.43) turns it into

λ−1
1

(
r[λ1] − r

)
+ λ1rq[λ1]r = λ−1

2

(
r[λ2] − r

)
+ λ2rq[λ2]r, (3.53)

which means that λ−1(r[λ] − r) + λrq[λ1]r is independent of λ. This is obviously equivalent to
the second of equations (3.49). Inserting (3.48) into (3.42) transforms it into

λ−1
1

(
q[λ1] − q

)
[λ2] − λ−1

2

(
q[λ2] − q

)
[λ1] +

(
λ1q[λ1] − λ2q[λ2]

)
rq[λ1]+[λ2] = 0, (3.54)

which indeed holds as a consequence of the second of equations (3.49), and the integrability
condition of (3.48), which is

λ−1
2

((
q[λ1]r

)
[λ2] − q[λ1]r

) − λ−1
1

((
q[λ2]r

)
[λ1] − q[λ2]r

) = 0. (3.55)

A lengthier calculation shows that (3.41) also results from (3.49).

Remark. Our general results imply that

ϕ = u0φ =
(

p q

0 0

)
, (3.56)

where px = −qr according to (3.48), solves the KP hierarchy as a consequence of the AKNS
hierarchy equations. Inspection of (3.27) then shows that p satisfies the KP hierarchy.

Remark. Since u0 satisfies u2
0 = u0, the dressing relation L = Wu0ζW−1 implies L2 =

W(u0ζ )2W−1 = ζL. As a consequence, Ln = ζ n−1L, so that the Lax equations (2.28) take a
more familiar form of (generalized) AKNS hierarchies [42–44].

10 See also [40, 41] and references therein concerning nonlinear Schrödinger-type equations.
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4. Modified KP hierarchy

In this section, we derive a functional representation of the modified KP hierarchy [45–48],
which is given by

∂tn(L) = [(Ln)�1, L], n = 1, 2, . . . (4.1)

where

L = ∂ + u1 + u2∂
−1 + · · · (4.2)

with the operator ∂ of partial differentiation with respect to x = t1 (cf example 2) and
coefficients from some associative algebra A. Obviously, En, n > 0, which are determined
by theorem 2.1 and the recursion relation (2.33), are linearly homogeneous in ∂ . Hence,

E(λ) = 1 − λω(λ)∂, (4.3)

where

ω(λ) = 1 + u1λ +
(
u2 + u2

1

)
λ2 + · · · (4.4)

is a power series in λ with coefficients in A. Equation (2.18) now takes the form(
1 − λ1ω(λ1)−[λ2]∂

)
(1 − λ2ω(λ2)∂) = (

1 − λ2ω(λ2)−[λ1]∂
)
(1 − λ1ω(λ1)∂). (4.5)

Expansion in powers of ∂ leads to

ω(λ1)−[λ2]ω(λ2) = ω(λ2)−[λ1]ω(λ1) (4.6)

and
1

λ2

(
ω(λ1) − ω(λ1)−[λ2]

) − 1

λ1

(
ω(λ2) − ω(λ2)−[λ1]

)
= ω(λ2)−[λ1]ω(λ1)x − ω(λ1)−[λ2]ω(λ2)x. (4.7)

The first equation is solved by

ω(λ) = f−[λ]f
−1 (4.8)

with some invertible element f ∈ A. By comparison with (4.4),

v := u1 = −fxf
−1. (4.9)

Next we use (4.8) in (4.7), multiply by (f −1)−[λ1]−[λ2] from the left and by f from the right,
and apply a Miwa shift t → t + [λ1] + [λ2] to obtain the following functional representation of
the mKP hierarchy:

λ−1
2

((
f −1f[λ2]

)
[λ1] − f −1f[λ2]

) − λ−1
1

((
f −1f[λ1]

)
[λ2] − f −1f[λ1]

)
= (f −1fx)[λ1] − (f −1fx)[λ2], (4.10)

which is a noncommutative version of the differential Fay identity of the mKP hierarchy.
Adding it three times with cyclically permuted parameters λ1, λ2, λ3 leads to the corresponding
algebraic Fay identity

λ−1
1

((
f −1f[λ1]

)
[λ3] − (

f −1f[λ1]
)

[λ2]

)
+ λ−1

2

((
f −1f[λ2]

)
[λ1] − (

f −1f[λ2]
)

[λ3]

)
+ λ−1

3

((
f −1f[λ3]

)
[λ2] − (

f −1f[λ3]
)

[λ1]

) = 0. (4.11)

(4.10) is equivalent to

χn(f
−1χm+1(f )) = χm(f −1χn+1(f )), m, n = 1, 2, . . . . (4.12)
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For m = 1 and n = 2, this yields(
ft − 1

4fxxx

)
x
− 3

4fyy − fxf
−1(ft − fxxx)

+ 3
4 (fyf

−1 + (fxf
−1)x − (fxf

−1)2)(fxx + fy) = 0 (4.13)

which, multiplied by f −1 from the right, leads to

vt − 1
4vxxx + 3

2vvxv − 3
4 [v, vxx] − 3

4 (wy + w(vx − v2) + (vx + v2)w) = 0 (4.14)

where we introduced

w := −fyf
−1. (4.15)

Since wx = vy − [v,w], there is no way to express also the terms involving w completely
in terms of v, unless we assume that A is commutative, in which case we obtain the mKP
equation (see [49], for example)

vt − 1
4vxxx + 3

2v2vx − 3
4∂−1(vyy) − 3

2vx∂
−1(vy) = 0. (4.16)

Returning to the noncommutative case and setting fy = 0, (4.14) reduces to the second version
of a ‘matrix mKdV equation’ in [50],

vt − 1
4vxxx + 3

2vvxv − 3
4 [v, vxx] = 0. (4.17)

The mKP hierarchy in the form (4.12) implies the existence of a potential φ such that

f −1χn+1(f ) = −χn(φ), n = 1, 2, . . . , (4.18)

which can, of course, also be written as

χn+1(f ) = −f χn(φ), n = 1, 2, . . . . (4.19)

Whereas the first form of this linear system naturally imposes integrability conditions on f ,
namely the mKP equations in the form (4.12), the second gives rise to integrability conditions
in terms of the potential φ. Since (4.19) coincides with (3.29), the latter are precisely the
potential KP hierarchy equations in the form (3.24) (with ϕ replaced by φ).

Furthermore, the above linear system mediates between the two hierarchies. The lowest
(n = 1) member of (4.19) reads

u := φx = −f −1χ2(f ) = − 1
2f −1(fy + fxx). (4.20)

In the ‘commutative’ case, we can express the right-hand side in terms of v and recover
the Miura transformation (see [12, 51], for example), which maps solutions of the mKP to
solutions of the KP equation.

Remark. The ‘duality’ between the mKP and the KP hierarchy, which emerged here, reminds
us of the relation between different forms of the (anti-) self-dual Yang–Mills equation (see
[52], for example) and also the analogous relation between the principal chiral model and its
pseudo-dual. In the latter case, the analogue of (4.19) is

∂tn+1(f ) = −f ∂tn(φ), n = 1, 2, . . . (4.21)

which gives rise to the following two versions of integrability conditions:

∂tn

(
f −1∂tm+1(f )

) = ∂tm

(
f −1∂tn+1(f )

)
(4.22)

(the analogue of the mKP hierarchy equations in the form (4.12)) and

∂tn+1∂tm(φ) − ∂tm+1∂tn(φ) = [
∂tn(φ), ∂tm(φ)

]
(4.23)

(the analogue of the KP hierarchy equations in the form obtained from (4.19)). The condition
tn+2 = tn reduces these systems to the principal chiral model equation

∂t2

(
f −1∂t2(f )

) = ∂t1

(
f −1∂t1(f )

)
, (4.24)
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respectively the pseudodual chiral model equation [53, 54]

∂t1∂t1(φ) − ∂t2∂t2(φ) = [∂t2(φ), ∂t1(φ)]. (4.25)

Both are known to be expressions of the system

F := dA + A ∧ A = 0, d � A = 0, (4.26)

for a 1-form A in two dimensions, where � is the Euclidean Hodge operator. The chiral
model results by solving the first equation by A = f −1 df with an invertible matrix f . The
pseudodual model is obtained by solving the second equation via A = � dφ with a matrix of
functions φ. As we have seen, both models also emerge from the linear system (4.21). The
latter has the following generalization:

∂sn
(f ) = −f ∂tn(φ) (4.27)

with an additional set of independent variables sn, n = 1, 2, . . . . The corresponding
integrability conditions are

∂tn

(
f −1∂sm

(f )
) = ∂tm

(
f −1∂sn

(f )
)
, (4.28)

respectively,

∂sn
∂tm(φ) − ∂sm

∂tn (φ) = [
∂tn(φ), ∂tm(φ)

]
. (4.29)

(4.28) represents a self-dual Yang–Mills hierarchy [52, 55–58] and (4.29) is its ‘dual’ version.
It remains to be seen whether there is a meaningful ‘reverse’ analogue of (4.27) which
generalizes (4.19) in a similar way as (4.27) generalizes (4.21).

5. Conclusions

In this work, we formulated a rather general approach towards ‘functional representations’
of integrable hierarchies, in particular analogues of ‘Fay identities’. This formalism is not
restricted to commutative dependent variables, but genuinely applies to ‘noncommutative
hierarchies’, where the dependent variables live in any noncommutative algebra11, like matrix
KP hierarchies. The central part of the formalism is general enough to embrace many more
integrable hierarchies and should serve to unify individual results in the literature. We provided
corresponding examples, but by far did not exhaust the possibilities.

Apart from the fact that our approach presents a fairly simple and systematic way towards
functional representations of specific ‘noncommutative’ integrable hierarchies, it also serves
beyond that as a tool in ‘integrable hierarchy theory’. For example, the application of the
formalism in section 4 nicely displays the ‘duality’ between the mKP and the KP hierarchy.
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